VMIFGSM¶
VMIFGSM
¶
Bases: Attack
The VMI-FGSM (Variance-tuned Momentum Iterative FGSM) attack.
From the paper: Enhancing the Transferability of Adversarial Attacks through Variance Tuning.
Note
Key parameters are n
and beta
, where n
is the number of sampled
examples for variance tuning and beta
is the upper bound of the
neighborhood for varying the perturbation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module | AttackModel
|
The model to attack. |
required |
normalize
|
Callable[[Tensor], Tensor] | None
|
A transform to normalize images. |
None
|
device
|
device | None
|
Device to use for tensors. Defaults to cuda if available. |
None
|
eps
|
float
|
The maximum perturbation. Defaults to 8/255. |
8 / 255
|
steps
|
int
|
Number of steps. Defaults to 10. |
10
|
alpha
|
float | None
|
Step size, |
None
|
decay
|
float
|
Decay factor for the momentum term. Defaults to 1.0. |
1.0
|
n
|
int
|
Number of sampled examples for variance tuning. Defaults to 5. |
5
|
beta
|
float
|
The upper bound of the neighborhood. Defaults to 1.5. |
1.5
|
clip_min
|
float
|
Minimum value for clipping. Defaults to 0.0. |
0.0
|
clip_max
|
float
|
Maximum value for clipping. Defaults to 1.0. |
1.0
|
targeted
|
bool
|
Targeted attack if True. Defaults to False. |
False
|
Source code in torchattack/vmifgsm.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
forward(x, y)
¶
Perform VMI-FGSM on a batch of images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
A batch of images. Shape: (N, C, H, W). |
required |
y
|
Tensor
|
A batch of labels. Shape: (N). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The perturbed images if successful. Shape: (N, C, H, W). |