SSA¶
SSA
¶
Bases: Attack
The SSA - Spectrum Simulation (S^2_I-FGSM) attack.
From the paper: Frequency Domain Model Augmentation for Adversarial Attack.
N.B.: This is implemented with momentum applied, i.e., on top of MI-FGSM.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module | AttackModel
|
The model to attack. |
required |
normalize
|
Callable[[Tensor], Tensor] | None
|
A transform to normalize images. |
None
|
device
|
device | None
|
Device to use for tensors. Defaults to cuda if available. |
None
|
eps
|
float
|
The maximum perturbation. Defaults to 8/255. |
8 / 255
|
steps
|
int
|
Number of steps. Defaults to 10. |
10
|
alpha
|
float | None
|
Step size, |
None
|
decay
|
float
|
Decay factor for the momentum term. Defaults to 1.0. |
1.0
|
clip_min
|
float
|
Minimum value for clipping. Defaults to 0.0. |
0.0
|
clip_max
|
float
|
Maximum value for clipping. Defaults to 1.0. |
1.0
|
targeted
|
bool
|
Targeted attack if True. Defaults to False. |
False
|
Source code in torchattack/ssa.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
|
_dct(x, norm=None)
¶
Discrete Cosine Transform, Type II (a.k.a. the DCT) (This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
the input signal |
required |
norm
|
str | None
|
the normalization, None or 'ortho' |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The DCT-II of the signal over the last dimension |
Source code in torchattack/ssa.py
_dct_2d(x, norm=None)
¶
2-dimentional Discrete Cosine Transform, Type II (a.k.a. the DCT) (This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
the input signal |
required |
norm
|
str | None
|
the normalization, None or 'ortho' |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The DCT-II of the signal over the last 2 dimensions |
Source code in torchattack/ssa.py
_idct(mat_x, norm=None)
¶
The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III Our definition of idct is that idct(dct(x)) == x (This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mat_x
|
Tensor
|
the input signal |
required |
norm
|
str | None
|
the normalization, None or 'ortho' |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The inverse DCT-II of the signal over the last dimension |
Source code in torchattack/ssa.py
_idct_2d(mat_x, norm=None)
¶
The inverse to 2D DCT-II, which is a scaled Discrete Cosine Transform, Type III Our definition of idct is that idct_2d(dct_2d(x)) == x (This code is copied from https://github.com/yuyang-long/SSA/blob/master/dct.py)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mat_x
|
Tensor
|
the input signal |
required |
norm
|
str | None
|
the normalization, None or 'ortho' |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
The DCT-II of the signal over the last 2 dimensions |
Source code in torchattack/ssa.py
forward(x, y)
¶
Perform SSA on a batch of images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
A batch of images. Shape: (N, C, H, W). |
required |
y
|
Tensor
|
A batch of labels. Shape: (N). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The perturbed images if successful. Shape: (N, C, H, W). |