DIFGSM¶
DIFGSM
¶
Bases: Attack
The DI-FGSM (Diverse-input Iterative FGSM) attack.
From the paper: Improving Transferability of Adversarial Examples with Input Diversity.
Note
Key parameters include resize_rate
and diversity_prob
, which defines the
scale size of the resized image and the probability of applying input
diversity. The default values are set to 0.9 and 1.0 respectively (implying
that input diversity is always applied).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module | AttackModel
|
The model to attack. |
required |
normalize
|
Callable[[Tensor], Tensor] | None
|
A transform to normalize images. |
None
|
device
|
device | None
|
Device to use for tensors. Defaults to cuda if available. |
None
|
eps
|
float
|
The maximum perturbation. Defaults to 8/255. |
8 / 255
|
steps
|
int
|
Number of steps. Defaults to 10. |
10
|
alpha
|
float | None
|
Step size, |
None
|
decay
|
float
|
Decay factor for the momentum term. Defaults to 1.0. |
1.0
|
resize_rate
|
float
|
The resize rate. Defaults to 0.9. |
0.9
|
diversity_prob
|
float
|
Applying input diversity with probability. Defaults to 1.0. |
1.0
|
clip_min
|
float
|
Minimum value for clipping. Defaults to 0.0. |
0.0
|
clip_max
|
float
|
Maximum value for clipping. Defaults to 1.0. |
1.0
|
targeted
|
bool
|
Targeted attack if True. Defaults to False. |
False
|
Source code in torchattack/difgsm.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
forward(x, y)
¶
Perform DI-FGSM on a batch of images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
A batch of images. Shape: (N, C, H, W). |
required |
y
|
Tensor
|
A batch of labels. Shape: (N). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The perturbed images if successful. Shape: (N, C, H, W). |