BSR¶
BSR
¶
Bases: Attack
The BSR (Block Shuffle and Rotation) attack.
From the paper: Boosting Adversarial Transferability by Block Shuffle and Rotation.
Note
The BSR attack requires the torchvision
package as it uses
torchvision.transforms
for image transformations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module | AttackModel
|
The model to attack. |
required |
normalize
|
Callable[[Tensor], Tensor] | None
|
A transform to normalize images. |
None
|
device
|
device | None
|
Device to use for tensors. Defaults to cuda if available. |
None
|
eps
|
float
|
The maximum perturbation. Defaults to 8/255. |
8 / 255
|
steps
|
int
|
Number of steps. Defaults to 10. |
10
|
alpha
|
float | None
|
Step size, |
None
|
decay
|
float
|
Decay factor for the momentum term. Defaults to 1.0. |
1.0
|
num_scale
|
int
|
Number of scaled inputs. Defaults to 20. |
20
|
num_block
|
int
|
Number of blocks. Defaults to 3. |
3
|
clip_min
|
float
|
Minimum value for clipping. Defaults to 0.0. |
0.0
|
clip_max
|
float
|
Maximum value for clipping. Defaults to 1.0. |
1.0
|
targeted
|
bool
|
Targeted attack if True. Defaults to False. |
False
|
Source code in torchattack/bsr.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
|
_bsr_shuffle(x)
¶
Apply the BSR (Block Shuffle and Rotate) transformation to the input tensor.
This method shuffles the input tensor along two specified dimensions, applies random rotations to the shuffled strips, and concatenates the results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
Input tensor to be shuffled and rotated. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
A tensor that has been shuffled by blocks and rotated randomly. |
Source code in torchattack/bsr.py
_gen_rand_lengths(length)
¶
Generate a tuple of random lengths that sum up to the given length. These lengths are used to split a tensor into blocks of varying sizes.
Example
_gen_rand_lengths(10) -> (3, 3, 4)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
length
|
int
|
The total length to split. |
required |
Returns:
Type | Description |
---|---|
tuple[int]
|
The randomly generated lengths of the split. |
Source code in torchattack/bsr.py
_shuffle_single_dim(x, dim)
¶
Shuffles the elements of a specified dimension in a tensor.
Uses the lengths generated by self._gen_rand_lengths
to split a tensor along a
specified dimension into blocks of random lengths. Blocks are then shuffled.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
The input tensor. |
required |
dim
|
int
|
The dimension along which to shuffle the elements. |
required |
Returns:
Type | Description |
---|---|
list[Tensor]
|
A list of shuffled tensors. |
Source code in torchattack/bsr.py
forward(x, y)
¶
Perform BSR on a batch of images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
A batch of images. Shape: (N, C, H, W). |
required |
y
|
Tensor
|
A batch of labels. Shape: (N). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The perturbed images if successful. Shape: (N, C, H, W). |