Skip to content

ATT

ATT

Bases: Attack

The ATT (Adaptive Token Tuning) attack for ViTs.

From the paper: Boosting the Transferability of Adversarial Attack on Vision Transformer with Adaptive Token Tuning.

Parameters:

Name Type Description Default
model Module | AttackModel

The model to attack.

required
normalize Callable[[Tensor], Tensor] | None

A transform to normalize images.

None
device device | None

Device to use for tensors. Defaults to cuda if available.

None
hook_cfg str

Config used for applying hooks to the model. Supported values: vit_base_patch16_224, pit_b_224, cait_s24_224, visformer_small.

''
eps float

The maximum perturbation. Defaults to 8/255.

8 / 255
steps int

Number of steps. Defaults to 10.

10
alpha float | None

Step size, eps / steps if None. Defaults to None.

None
decay float

Decay factor for the momentum term. Defaults to 1.0.

1.0
lambd float

Lambda value for the gradient factor. Defaults to 0.01.

0.01
clip_min float

Minimum value for clipping. Defaults to 0.0.

0.0
clip_max float

Maximum value for clipping. Defaults to 1.0.

1.0
targeted bool

Targeted attack if True. Defaults to False.

False
Source code in torchattack/att.py
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
@register_attack(category='GRADIENT_VIT')
class ATT(Attack):
    """The ATT (Adaptive Token Tuning) attack for ViTs.

    > From the paper: [Boosting the Transferability of Adversarial Attack on Vision
    Transformer with Adaptive Token Tuning](https://openreview.net/forum?id=sNz7tptCH6).

    Args:
        model: The model to attack.
        normalize: A transform to normalize images.
        device: Device to use for tensors. Defaults to cuda if available.
        hook_cfg: Config used for applying hooks to the model. Supported values:
            `vit_base_patch16_224`, `pit_b_224`, `cait_s24_224`, `visformer_small`.
        eps: The maximum perturbation. Defaults to 8/255.
        steps: Number of steps. Defaults to 10.
        alpha: Step size, `eps / steps` if None. Defaults to None.
        decay: Decay factor for the momentum term. Defaults to 1.0.
        lambd: Lambda value for the gradient factor. Defaults to 0.01.
        clip_min: Minimum value for clipping. Defaults to 0.0.
        clip_max: Maximum value for clipping. Defaults to 1.0.
        targeted: Targeted attack if True. Defaults to False.
    """

    def __init__(
        self,
        model: nn.Module | AttackModel,
        normalize: Callable[[torch.Tensor], torch.Tensor] | None = None,
        device: torch.device | None = None,
        hook_cfg: str = '',
        eps: float = 8 / 255,
        steps: int = 10,
        alpha: float | None = None,
        decay: float = 1.0,
        lambd: float = 0.01,
        clip_min: float = 0.0,
        clip_max: float = 1.0,
        targeted: bool = False,
    ):
        # Surrogate ViT for VDC must be `timm` models or models that have the same
        # structure and same implementation/definition as `timm` models.
        super().__init__(model, normalize, device)

        if hook_cfg:
            # Explicit config name takes precedence over inferred model.model_name
            self.hook_cfg = hook_cfg
        elif isinstance(model, AttackModel):
            # If model is initialized via `torchattack.AttackModel`, the model_name
            # is automatically attached to the model during instantiation.
            self.hook_cfg = model.model_name

        self.eps = eps
        self.steps = steps
        self.alpha = alpha
        self.decay = decay
        self.lambd = lambd
        self.clip_min = clip_min
        self.clip_max = clip_max
        self.targeted = targeted
        self.lossfn = nn.CrossEntropyLoss()

        self.img_size = 224
        self.crop_len = 16

        self.mid_feats = torch.tensor([])
        self.mid_grads = torch.tensor([])
        self.patch_index = self._patch_index(self.img_size, self.crop_len).to(device)
        self.gamma = torch.tensor(0.5)

        if self.hook_cfg not in [
            'vit_base_patch16_224',
            'pit_b_224',
            'cait_s24_224',
            'visformer_small',
        ]:
            from warnings import warn

            warn(
                f'Hook config specified (`{self.hook_cfg}`) is not supported. '
                'Falling back to default (`vit_base_patch16_224`). '
                'This MAY NOT be intended.',
                stacklevel=2,
            )
            self.hook_cfg = 'vit_base_patch16_224'

        # Initialize layer and patch parameters
        self._init_params()

        # Register hooks for the model
        self._register_vit_model_hook()

    def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        """Perform ATT on a batch of images.

        Args:
            x: A batch of images. Shape: (N, C, H, W).
            y: A batch of labels. Shape: (N).

        Returns:
            The perturbed images if successful. Shape: (N, C, H, W).
        """

        g = torch.zeros_like(x)
        delta = torch.zeros_like(x, requires_grad=True)

        # If alpha is not given, set to eps / steps
        if self.alpha is None:
            self.alpha = self.eps / self.steps

        # Forward and backward pass with dummy input to init gradient + features
        output = self.model(self.normalize(x))
        output.backward(torch.ones_like(output))

        gf = self._get_gf()

        # Normalize and expand gradient features to match the original image size
        gf_patchs_t = self._norm_patchs(
            gf, self.patch_index, self.crop_len, self.scale, self.offset
        )

        # Initialize the starting threshold for gradient features patches
        gf_patchs_start = torch.ones_like(gf_patchs_t) * 0.99

        # Calculate the offset for gradient features patches for each step
        gf_offset = (gf_patchs_start - gf_patchs_t) / self.steps

        for i in range(self.steps):
            self._reset_vars()

            # Init random patch
            random_patch = torch.rand_like(x)

            # Calculate the threshold for gradient features patches for the current step
            gf_patchs_threshold = gf_patchs_start - gf_offset * (i + 1)

            # Create a mask for the gradient features patches based on the threshold
            gf_patchs = torch.where(random_patch > gf_patchs_threshold, 0.0, 1.0)

            # Apply gradient feature patches to the perturbation
            outs = self.model(self.normalize(x + delta * gf_patchs))
            loss = self.lossfn(outs, y)

            if self.targeted:
                loss = -loss

            # Compute gradient
            loss.backward()

            if delta.grad is None:
                continue

            # Apply momentum term
            g = self.decay * g + delta.grad / torch.mean(
                torch.abs(delta.grad), dim=(1, 2, 3), keepdim=True
            )

            # Update delta
            delta.data = delta.data + self.alpha * g.sign()
            delta.data = torch.clamp(delta.data, -self.eps, self.eps)
            delta.data = torch.clamp(x + delta.data, self.clip_min, self.clip_max) - x

            # Zero out gradient
            delta.grad.detach_()
            delta.grad.zero_()

        return x + delta

    def _get_gf(self) -> torch.Tensor:
        if self.hook_cfg == 'vit_base_patch16_224':
            gf = (self.mid_feats[0][1:] * self.mid_grads[0][1:]).sum(-1)
            gf = self._resize(gf.reshape(1, 14, 14), self.img_size)
        elif self.hook_cfg == 'pit_b_224':
            gf = (self.mid_feats[0][1:] * self.mid_grads[0][1:]).sum(-1)
            gf = self._resize(gf.reshape(1, 8, 8), self.img_size)
        elif self.hook_cfg == 'cait_s24_224':
            gf = (self.mid_feats[0] * self.mid_grads).sum(-1)
            gf = self._resize(gf.reshape(1, 14, 14), self.img_size)
        elif self.hook_cfg == 'visformer_small':
            gf = (self.mid_feats[0] * self.mid_grads).sum(0)
            gf = self._resize(gf.unsqueeze(0), self.img_size)
        else:
            raise ValueError(f'Unsupported hook config: {self.hook_cfg}')
        return gf

    def _init_params(self) -> None:
        self._reset_vars()

        if self.hook_cfg == 'vit_base_patch16_224':
            self.truncate_layers = self._tr_01_pc(10, 12)
            self.weaken_factor = [0.45, 0.7, 0.65]
            self.scale = 0.4
            self.offset = 0.4
        elif self.hook_cfg == 'pit_b_224':
            self.truncate_layers = self._tr_01_pc(9, 13)
            self.weaken_factor = [0.25, 0.6, 0.65]
            self.scale = 0.3
            self.offset = 0.45
        elif self.hook_cfg == 'cait_s24_224':
            self.truncate_layers = self._tr_01_pc(4, 25)
            self.weaken_factor = [0.3, 1.0, 0.6]
            self.scale = 0.35
            self.offset = 0.4
        elif self.hook_cfg == 'visformer_small':
            self.truncate_layers = self._tr_01_pc(8, 8)
            self.weaken_factor = [0.4, 0.8, 0.3]
            self.scale = 0.15
            self.offset = 0.25
        else:
            raise ValueError(f'Unsupported hook config: {self.hook_cfg}')

    def _reset_vars(self) -> None:
        self.var_a = torch.tensor(0)
        self.var_qkv = torch.tensor(0)
        self.var_mlp = torch.tensor(0)

        if self.hook_cfg == 'vit_base_patch16_224':
            self.back_attn = 11
        elif self.hook_cfg == 'pit_b_224':
            self.back_attn = 12
        elif self.hook_cfg == 'cait_s24_224':
            self.back_attn = 24
        elif self.hook_cfg == 'visformer_small':
            self.back_attn = 7
        else:
            raise ValueError(f'Unsupported hook config: {self.hook_cfg}')

    @staticmethod
    def _resize(x: torch.Tensor, img_size: int) -> torch.Tensor:
        """Simplified version of `torchvision.transforms.Resize`."""

        need_squeeze = False
        # make image NCHW
        if x.ndim < 4:
            x = x.unsqueeze(dim=0)
            need_squeeze = True
        x = torch.nn.functional.interpolate(
            x,
            size=(img_size, img_size),
            mode='bilinear',
            align_corners=False,
        )
        return x.squeeze(0) if need_squeeze else x

    @staticmethod
    def _tr_01_pc(num: int, len: int) -> torch.Tensor:
        """Create a tensor with 1s at the first `num` indices and 0s elsewhere."""

        return torch.cat((torch.ones(num), torch.zeros(len - num)))

    @staticmethod
    def _patch_index(img_size: int, crop_len: int) -> torch.Tensor:
        """Create indices for patches in an image."""

        # Calculate number of patches in each dimension
        num_patches = int(np.floor((img_size - crop_len) / crop_len) + 1)

        # Create base indices for a single patch
        row_indices = np.arange(crop_len)[:, None] * img_size
        col_indices = np.arange(crop_len)
        patch_base = row_indices + col_indices

        # Create offset matrices for patches
        row_offsets = (np.arange(num_patches) * crop_len * img_size)[:, None]
        col_offsets = np.arange(num_patches) * crop_len

        # Combine offsets to get all patch positions
        patch_positions = row_offsets.reshape(-1, 1) + col_offsets.reshape(1, -1)
        patch_positions = patch_positions.reshape(-1, 1)

        # Add base indices to each patch position
        indices = patch_positions + patch_base.ravel()

        # Convert to correct shape and return as tensor
        return torch.LongTensor(indices).unsqueeze(0)

    @staticmethod
    def _norm_patchs(
        gf: torch.Tensor,
        patch_index: torch.Tensor,
        patch_size: int,
        scale: float,
        offset: float,
    ) -> torch.Tensor:
        """Normalize and expand patch values to match the original image size."""

        # Extract patch values using indices
        patch_values = torch.take(gf, patch_index)

        # Calculate mean for each patch
        patch_means = torch.mean(patch_values, dim=-1, keepdim=True)

        # Min-max normalization of patch means
        min_values = patch_means.min(dim=-1, keepdim=True)[0]
        max_values = patch_means.max(dim=-1, keepdim=True)[0]
        normalized_values = (patch_means - min_values) / (max_values - min_values)

        # Apply scaling and offset
        scaled_values = scale * normalized_values + offset

        # Expand normalized values to match patch size
        expanded_values = scaled_values.repeat_interleave(patch_size**2, dim=-1)

        # Update gradient features with normalized values
        gf = gf.put_(patch_index, expanded_values)

        return gf

    def _register_vit_model_hook(self) -> None:
        def attn_att(
            module: nn.Module,
            grad_in: tuple[torch.Tensor, ...],
            grad_out: tuple[torch.Tensor, ...],
        ) -> tuple[torch.Tensor, ...]:
            mask = (
                torch.ones_like(grad_in[0])
                * self.truncate_layers[self.back_attn]
                * self.weaken_factor[0]
            )
            out_grad = mask * grad_in[0][:]
            if self.var_a.item() == 0:
                gpf = self.gamma
            else:
                gpf = 1 - torch.sqrt(torch.var(out_grad) / self.var_a)
                gpf = (self.gamma + self.lambd * gpf).clamp(0, 1)
            if self.hook_cfg in [
                'vit_base_patch16_224',
                'visformer_small',
                'pit_b_224',
            ]:
                b, c, h, w = grad_in[0].shape
                out_grad_reshaped = out_grad.reshape(b, c, h * w)
                max_all = out_grad_reshaped[0].max(dim=1)[1]
                min_all = out_grad_reshaped[0].min(dim=1)[1]
                max_all_h = max_all // h
                max_all_w = max_all % h
                min_all_h = min_all // h
                min_all_w = min_all % h

                out_grad[:, range(c), max_all_h, :] *= gpf
                out_grad[:, range(c), :, max_all_w] *= gpf
                out_grad[:, range(c), min_all_h, :] *= gpf
                out_grad[:, range(c), :, min_all_w] *= gpf

            if self.hook_cfg in ['cait_s24_224']:
                b, h, w, c = grad_in[0].shape
                out_grad_reshaped = out_grad.reshape(b, h * w, c)
                max_all = out_grad_reshaped[0, :, :].max(dim=0)[1]
                min_all = out_grad_reshaped[0, :, :].min(dim=0)[1]
                max_all_h = max_all // h
                max_all_w = max_all % h
                min_all_h = min_all // h
                min_all_w = min_all % h

                out_grad[:, max_all_h, :, range(c)] *= gpf
                out_grad[:, :, max_all_w, range(c)] *= gpf
                out_grad[:, min_all_h, :, range(c)] *= gpf
                out_grad[:, :, min_all_w, range(c)] *= gpf

            self.var_a = torch.var(out_grad)

            self.back_attn -= 1
            return (out_grad,)

        def attn_cait_att(
            module: nn.Module,
            grad_in: tuple[torch.Tensor, ...],
            grad_out: tuple[torch.Tensor, ...],
        ) -> tuple[torch.Tensor, ...]:
            mask = (
                torch.ones_like(grad_in[0])
                * self.truncate_layers[self.back_attn]
                * self.weaken_factor[0]
            )

            out_grad = mask * grad_in[0][:]
            if self.var_a.item() == 0:
                gpf = self.gamma
            else:
                gpf = 1 - torch.sqrt(torch.var(out_grad) / self.var_a)
                gpf = (self.gamma + self.lambd * gpf).clamp(0, 1)
            b, h, w, c = grad_in[0].shape
            out_grad_reshaped = out_grad.reshape(b, h * w, c)
            max_all = out_grad_reshaped[0, :, :].max(dim=0)[1]
            min_all = out_grad_reshaped[0, :, :].min(dim=0)[1]
            max_all_h = max_all // h
            max_all_w = max_all % h
            min_all_h = min_all // h
            min_all_w = min_all % h

            out_grad[:, max_all_h, :, range(c)] *= gpf
            out_grad[:, :, max_all_w, range(c)] *= gpf
            out_grad[:, min_all_h, :, range(c)] *= gpf
            out_grad[:, :, min_all_w, range(c)] *= gpf

            self.var_a = torch.var(out_grad)
            self.back_attn -= 1
            return (out_grad,)

        def q_att(
            module: nn.Module,
            grad_in: tuple[torch.Tensor, ...],
            grad_out: tuple[torch.Tensor, ...],
        ) -> tuple[torch.Tensor, ...]:
            # cait Q only uses class token
            mask = torch.ones_like(grad_in[0]) * self.weaken_factor[1]
            out_grad = mask * grad_in[0][:]
            if self.var_qkv.item() == 0:
                gpf = self.gamma
            else:
                gpf = 1 - torch.sqrt(torch.var(out_grad) / self.var_qkv)
                gpf = (self.gamma + self.lambd * gpf).clamp(0, 1)
            out_grad[:] *= gpf
            self.var_qkv = torch.var(out_grad)
            return (out_grad, grad_in[1], grad_in[2])

        def v_att(
            module: nn.Module,
            grad_in: tuple[torch.Tensor, ...],
            grad_out: tuple[torch.Tensor, ...],
        ) -> tuple[torch.Tensor, ...]:
            is_dim_extra = False
            if len(grad_in[0].shape) == 2:
                is_dim_extra = True
                grad_in = (grad_in[0].unsqueeze(0),) + grad_in[1:]

            mask = torch.ones_like(grad_in[0]) * self.weaken_factor[1]
            out_grad = mask * grad_in[0][:]
            if self.var_qkv.item() == 0:
                gpf = self.gamma
            else:
                gpf = 1 - torch.sqrt(torch.var(out_grad) / self.var_qkv)
                gpf = (self.gamma + self.lambd * gpf).clamp(0, 1)

            if self.hook_cfg in ['visformer_small']:
                b, c, h, w = grad_in[0].shape
                out_grad_reshaped = out_grad.reshape(b, c, h * w)
                max_all = out_grad_reshaped[0].max(dim=1)[1]
                min_all = out_grad_reshaped[0].min(dim=1)[1]
                max_all_h = max_all // h
                max_all_w = max_all % h
                min_all_h = min_all // h
                min_all_w = min_all % h

                out_grad[:, range(c), max_all_h, max_all_w] *= gpf
                out_grad[:, range(c), min_all_h, min_all_w] *= gpf

            if self.hook_cfg in ['vit_base_patch16_224', 'pit_b_224', 'cait_s24_224']:
                c = grad_in[0].shape[2]
                out_grad_reshaped = out_grad[0]
                max_all = out_grad_reshaped.max(dim=0)[1]
                min_all = out_grad_reshaped.min(dim=0)[1]

                out_grad[:, max_all, range(c)] *= gpf
                out_grad[:, min_all, range(c)] *= gpf

            if is_dim_extra:
                out_grad = out_grad.squeeze(0)

            self.var_qkv = torch.var(out_grad)
            return (out_grad,) + tuple(grad_in[1:])

        def mlp_att(
            module: nn.Module,
            grad_in: tuple[torch.Tensor, ...],
            grad_out: tuple[torch.Tensor, ...],
        ) -> tuple[torch.Tensor, ...]:
            is_dim_extra = False
            if len(grad_in[0].shape) == 2:
                is_dim_extra = True
                grad_in = (grad_in[0].unsqueeze(0),) + grad_in[1:]

            mask = torch.ones_like(grad_in[0]) * self.weaken_factor[2]
            out_grad = mask * grad_in[0][:]
            if self.var_mlp.item() == 0:
                gpf = self.gamma
            else:
                gpf = 1 - torch.sqrt(torch.var(out_grad) / self.var_mlp)
                gpf = (self.gamma + self.lambd * gpf).clamp(0, 1)

            if self.hook_cfg in ['visformer_small']:
                b, c, h, w = grad_in[0].shape
                out_grad_reshaped = out_grad.reshape(b, c, h * w)
                max_all = out_grad_reshaped[0].max(dim=1)[1]
                min_all = out_grad_reshaped[0].min(dim=1)[1]
                max_all_h = max_all // h
                max_all_w = max_all % h
                min_all_h = min_all // h
                min_all_w = min_all % h
                out_grad[:, range(c), max_all_h, max_all_w] *= gpf
                out_grad[:, range(c), min_all_h, min_all_w] *= gpf

            if self.hook_cfg in [
                'vit_base_patch16_224',
                'pit_b_224',
                'cait_s24_224',
            ]:
                c = grad_in[0].shape[2]
                out_grad_reshaped = out_grad[0]
                max_all = out_grad_reshaped.max(dim=0)[1]
                min_all = out_grad_reshaped.min(dim=0)[1]

                out_grad[:, max_all, range(c)] *= gpf
                out_grad[:, min_all, range(c)] *= gpf

            if is_dim_extra:
                out_grad = out_grad.squeeze(0)

            self.var_mlp = torch.var(out_grad)
            return (out_grad,) + grad_in[1:]

        def mid_feats_hook(m: nn.Module, i: torch.Tensor, o: torch.Tensor) -> None:
            self.mid_feats = o.clone()

        def mid_grads_hook(m: nn.Module, i: torch.Tensor, o: torch.Tensor) -> None:
            self.mid_grads = o[0].clone()

        # fmt: off
        feature_grad_hook_cfg = {
            'vit_base_patch16_224': 'blocks.10',
            'pit_b_224': 'transformers.2.blocks.2',
            'cait_s24_224': 'blocks.23',
            'visformer_small': 'stage3.2'
        }

        attention_hook_cfg = {
            'vit_base_patch16_224': [
                (attn_att, [f'blocks.{i}.attn.attn_drop' for i in range(12)]),
                (v_att, [f'blocks.{i}.attn.qkv' for i in range(12)]),
                (mlp_att, [f'blocks.{i}.mlp' for i in range(12)]),
            ],
            'pit_b_224': [
                (attn_att, [f'transformers.{tid}.blocks.{i}.attn.attn_drop' for tid, bid in enumerate([3, 6, 4]) for i in range(bid)]),
                (v_att, [f'transformers.{tid}.blocks.{i}.attn.qkv' for tid, bid in enumerate([3, 6, 4]) for i in range(bid)]),
                (mlp_att, [f'transformers.{tid}.blocks.{i}.mlp' for tid, bid in enumerate([3, 6, 4]) for i in range(bid)]),
            ],
            'cait_s24_224': [
                (attn_att, [f'blocks.{i}.attn.attn_drop' for i in range(24)]),
                (v_att, [f'blocks.{i}.attn.qkv' for i in range(24)]),
                (mlp_att, [f'blocks.{i}.mlp' for i in range(24)]),
                (attn_cait_att, [f'blocks_token_only.{i}.attn.attn_drop' for i in range(2)]),
                (q_att, [f'blocks_token_only.{i}.attn.q' for i in range(2)]),
                (v_att, [f'blocks_token_only.{i}.attn.k' for i in range(2)] + [f'blocks_token_only.{i}.attn.v' for i in range(2)]),
                (mlp_att, [f'blocks_token_only.{i}.mlp' for i in range(2)]),
            ],
            'visformer_small': [
                (attn_att, [f'stage2.{i}.attn.attn_drop' for i in range(4)] + [f'stage3.{i}.attn.attn_drop' for i in range(4)]),
                (v_att, [f'stage2.{i}.attn.qkv' for i in range(4)] + [f'stage3.{i}.attn.qkv' for i in range(4)]),
                (mlp_att, [f'stage2.{i}.mlp' for i in range(4)] + [f'stage3.{i}.mlp' for i in range(4)]),
            ],
        }
        # fmt: on

        assert feature_grad_hook_cfg.keys() == attention_hook_cfg.keys()
        assert self.hook_cfg in feature_grad_hook_cfg

        # Register feature and gradient hooks
        module = rgetattr(self.model, feature_grad_hook_cfg[self.hook_cfg])
        module.register_forward_hook(mid_feats_hook)
        if self.hook_cfg in ['vit_base_patch16_224', 'pit_b_224']:
            module.register_backward_hook(mid_grads_hook)
        else:
            module.register_forward_hook(mid_grads_hook)  # not sure why

        # Register attention hooks
        for hook_func, layers in attention_hook_cfg[self.hook_cfg]:
            for layer in layers:
                module = rgetattr(self.model, layer)
                module.register_backward_hook(hook_func)

_norm_patchs(gf, patch_index, patch_size, scale, offset) staticmethod

Normalize and expand patch values to match the original image size.

Source code in torchattack/att.py
@staticmethod
def _norm_patchs(
    gf: torch.Tensor,
    patch_index: torch.Tensor,
    patch_size: int,
    scale: float,
    offset: float,
) -> torch.Tensor:
    """Normalize and expand patch values to match the original image size."""

    # Extract patch values using indices
    patch_values = torch.take(gf, patch_index)

    # Calculate mean for each patch
    patch_means = torch.mean(patch_values, dim=-1, keepdim=True)

    # Min-max normalization of patch means
    min_values = patch_means.min(dim=-1, keepdim=True)[0]
    max_values = patch_means.max(dim=-1, keepdim=True)[0]
    normalized_values = (patch_means - min_values) / (max_values - min_values)

    # Apply scaling and offset
    scaled_values = scale * normalized_values + offset

    # Expand normalized values to match patch size
    expanded_values = scaled_values.repeat_interleave(patch_size**2, dim=-1)

    # Update gradient features with normalized values
    gf = gf.put_(patch_index, expanded_values)

    return gf

_patch_index(img_size, crop_len) staticmethod

Create indices for patches in an image.

Source code in torchattack/att.py
@staticmethod
def _patch_index(img_size: int, crop_len: int) -> torch.Tensor:
    """Create indices for patches in an image."""

    # Calculate number of patches in each dimension
    num_patches = int(np.floor((img_size - crop_len) / crop_len) + 1)

    # Create base indices for a single patch
    row_indices = np.arange(crop_len)[:, None] * img_size
    col_indices = np.arange(crop_len)
    patch_base = row_indices + col_indices

    # Create offset matrices for patches
    row_offsets = (np.arange(num_patches) * crop_len * img_size)[:, None]
    col_offsets = np.arange(num_patches) * crop_len

    # Combine offsets to get all patch positions
    patch_positions = row_offsets.reshape(-1, 1) + col_offsets.reshape(1, -1)
    patch_positions = patch_positions.reshape(-1, 1)

    # Add base indices to each patch position
    indices = patch_positions + patch_base.ravel()

    # Convert to correct shape and return as tensor
    return torch.LongTensor(indices).unsqueeze(0)

_resize(x, img_size) staticmethod

Simplified version of torchvision.transforms.Resize.

Source code in torchattack/att.py
@staticmethod
def _resize(x: torch.Tensor, img_size: int) -> torch.Tensor:
    """Simplified version of `torchvision.transforms.Resize`."""

    need_squeeze = False
    # make image NCHW
    if x.ndim < 4:
        x = x.unsqueeze(dim=0)
        need_squeeze = True
    x = torch.nn.functional.interpolate(
        x,
        size=(img_size, img_size),
        mode='bilinear',
        align_corners=False,
    )
    return x.squeeze(0) if need_squeeze else x

_tr_01_pc(num, len) staticmethod

Create a tensor with 1s at the first num indices and 0s elsewhere.

Source code in torchattack/att.py
@staticmethod
def _tr_01_pc(num: int, len: int) -> torch.Tensor:
    """Create a tensor with 1s at the first `num` indices and 0s elsewhere."""

    return torch.cat((torch.ones(num), torch.zeros(len - num)))

forward(x, y)

Perform ATT on a batch of images.

Parameters:

Name Type Description Default
x Tensor

A batch of images. Shape: (N, C, H, W).

required
y Tensor

A batch of labels. Shape: (N).

required

Returns:

Type Description
Tensor

The perturbed images if successful. Shape: (N, C, H, W).

Source code in torchattack/att.py
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    """Perform ATT on a batch of images.

    Args:
        x: A batch of images. Shape: (N, C, H, W).
        y: A batch of labels. Shape: (N).

    Returns:
        The perturbed images if successful. Shape: (N, C, H, W).
    """

    g = torch.zeros_like(x)
    delta = torch.zeros_like(x, requires_grad=True)

    # If alpha is not given, set to eps / steps
    if self.alpha is None:
        self.alpha = self.eps / self.steps

    # Forward and backward pass with dummy input to init gradient + features
    output = self.model(self.normalize(x))
    output.backward(torch.ones_like(output))

    gf = self._get_gf()

    # Normalize and expand gradient features to match the original image size
    gf_patchs_t = self._norm_patchs(
        gf, self.patch_index, self.crop_len, self.scale, self.offset
    )

    # Initialize the starting threshold for gradient features patches
    gf_patchs_start = torch.ones_like(gf_patchs_t) * 0.99

    # Calculate the offset for gradient features patches for each step
    gf_offset = (gf_patchs_start - gf_patchs_t) / self.steps

    for i in range(self.steps):
        self._reset_vars()

        # Init random patch
        random_patch = torch.rand_like(x)

        # Calculate the threshold for gradient features patches for the current step
        gf_patchs_threshold = gf_patchs_start - gf_offset * (i + 1)

        # Create a mask for the gradient features patches based on the threshold
        gf_patchs = torch.where(random_patch > gf_patchs_threshold, 0.0, 1.0)

        # Apply gradient feature patches to the perturbation
        outs = self.model(self.normalize(x + delta * gf_patchs))
        loss = self.lossfn(outs, y)

        if self.targeted:
            loss = -loss

        # Compute gradient
        loss.backward()

        if delta.grad is None:
            continue

        # Apply momentum term
        g = self.decay * g + delta.grad / torch.mean(
            torch.abs(delta.grad), dim=(1, 2, 3), keepdim=True
        )

        # Update delta
        delta.data = delta.data + self.alpha * g.sign()
        delta.data = torch.clamp(delta.data, -self.eps, self.eps)
        delta.data = torch.clamp(x + delta.data, self.clip_min, self.clip_max) - x

        # Zero out gradient
        delta.grad.detach_()
        delta.grad.zero_()

    return x + delta