Admix¶
Admix
¶
Bases: Attack
The Admix attack.
From the paper: Admix: Enhancing the Transferability of Adversarial Attacks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module | AttackModel
|
The model to attack. |
required |
normalize
|
Callable[[Tensor], Tensor] | None
|
A transform to normalize images. |
None
|
device
|
device | None
|
Device to use for tensors. Defaults to cuda if available. |
None
|
eps
|
float
|
The maximum perturbation. Defaults to 8/255. |
8 / 255
|
steps
|
int
|
Number of steps. Defaults to 10. |
10
|
alpha
|
float | None
|
Step size, |
None
|
decay
|
float
|
Decay factor for the momentum term. Defaults to 1.0. |
1.0
|
portion
|
float
|
Portion for the mixed image. Defaults to 0.2. |
0.2
|
size
|
int
|
Number of randomly sampled images. Defaults to 3. |
3
|
num_classes
|
int
|
Number of classes of the dataset used. Defaults to 1000. |
1000
|
clip_min
|
float
|
Minimum value for clipping. Defaults to 0.0. |
0.0
|
clip_max
|
float
|
Maximum value for clipping. Defaults to 1.0. |
1.0
|
targeted
|
bool
|
Targeted attack if True. Defaults to False. |
False
|
Source code in torchattack/admix.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
forward(x, y)
¶
Perform Admix on a batch of images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Tensor
|
A batch of images. Shape: (N, C, H, W). |
required |
y
|
Tensor
|
A batch of labels. Shape: (N). |
required |
Returns:
Type | Description |
---|---|
Tensor
|
The perturbed images if successful. Shape: (N, C, H, W). |