NIPS 2017 Dataset¶
dataset
¶
NIPSDataset
¶
Bases: Dataset
The NIPS 2017 Adversarial Learning Challenge dataset (derived from ImageNet).
https://www.kaggle.com/datasets/google-brain/nips-2017-adversarial-learning-development-set
Source code in torchattack/evaluate/dataset.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|
__getitem__(index)
¶
Get an item from the dataset by index.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of the item to retrieve |
required |
Returns:
Type | Description |
---|---|
tuple[Tensor | Image, int, str] | tuple[Tensor | Image, tuple[int, int], str]
|
If return_target_label is False: (image, label, image_name) |
tuple[Tensor | Image, int, str] | tuple[Tensor | Image, tuple[int, int], str]
|
If return_target_label is True: (image, (label, target_label), image_name) |
Source code in torchattack/evaluate/dataset.py
__init__(image_root, image_csv, transform=None, max_samples=None, return_target_label=False)
¶
Initialize the NIPS 2017 Adversarial Learning Challenge dataset.
Dataset folder should contain the images in the following format:
Images from the dataset are loaded into torch.Tensor
within the range [0, 1].
It is your job to perform the necessary preprocessing normalizations before
passing the images to your model or to attacks.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image_root
|
str
|
Path to the folder containing the images. |
required |
image_csv
|
str
|
Path to the csv file containing the image names and labels. |
required |
transform
|
Callable[[Tensor | Image], Tensor] | None
|
An optional transform to apply to the images. Defaults to None. |
None
|
max_samples
|
int | None
|
Maximum number of samples to load. Defaults to None. |
None
|
Source code in torchattack/evaluate/dataset.py
_load_metadata(max_samples=None)
¶
Load image filenames and labels (ground truth + target labels) from the CSV.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_samples
|
int | None
|
Maximum number of samples to load. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
tuple[list[str], list[str], list[str]]
|
Tuple of (filenames, class_labels, target_labels) |
Source code in torchattack/evaluate/dataset.py
NIPSLoader
¶
Bases: DataLoader
A custom dataloader for the NIPS 2017 dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
root
|
str | None
|
Path to the root folder containing the images and CSV file. Defaults to None. |
None
|
image_root
|
str | None
|
Path to the folder containing the images. Defaults to None. |
None
|
image_csv
|
str | None
|
Path to the csv file containing the image names and labels. Defaults to None. |
None
|
transform
|
Callable[[Tensor | Image], Tensor] | None
|
An optional transform to apply to the images. Defaults to None. |
None
|
batch_size
|
int
|
Batch size for the dataloader. Defaults to 1. |
1
|
max_samples
|
int | None
|
Maximum number of samples to load. Defaults to None. |
None
|
return_target_label
|
bool
|
Whether to return the target label in addition to the label. Defaults to False. |
False
|
num_workers
|
int
|
Number of workers for the dataloader. Defaults to 4. |
4
|
shuffle
|
bool
|
Whether to shuffle the dataset. Defaults to False. |
False
|
Example
The dataloader reads image and label pairs (CSV file) from {path}/images.csv
by default, and loads the images from {path}/images/
.
>>> from torchvision.transforms import transforms
>>> from torchattack.evaluate import NIPSLoader
>>> transform = transforms.Compose([transforms.Resize([224]), transforms.ToTensor()])
>>> dataloader = NIPSLoader(
>>> root="data/nips2017", transform=transform, batch_size=16, max_samples=100
>>> )
>>> x, y, fname = next(iter(dataloader))
You can specify a custom image root directory and CSV file location by
specifying image_root
and image_csv
, which is usually used for evaluating
models on a generated adversarial examples directory.