Attack model wrapper¶
AttackModel
¶
A wrapper class for a pretrained model used for adversarial attacks.
Intended to be instantiated with AttackModel.from_pretrained(<MODEL_NAME>)
from
either torchvision.models
or timm
. The model is loaded and attributes including
model_name
, transform
, and normalize
are attached based on the model's config.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
The name of the model. |
required |
model
|
Module
|
The pretrained model itself. |
required |
transform
|
Callable[[Image | Tensor], Tensor]
|
The transformation function applied to input images. |
required |
normalize
|
Callable[[Tensor], Tensor]
|
The normalization function applied to input images. |
required |
meta
|
AttackModelMeta
|
Model metadata, including crop and resize size, interpolation, etc. |
required |
Example
>>> model = AttackModel.from_pretrained('resnet50')
>>> model
AttackModel(model_name=resnet50, transform=Compose(...), normalize=Normalize(...))
>>> model.transform
TvTransform(crop_size=[224], resize_size=[232], interpolation=InterpolationMode.BILINEAR)
>>> model.normalize
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
>>> model.model
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
...
)
Source code in torchattack/attack_model.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
create_relative_transform(other)
¶
Create relative transform function between two AttackModel instances.
Compose minimal, i.e., just enough, transforms, by not introducing unnecessary resizes if the input image size is already the same as the default size of the other model's input. Ensures that no unnecessary resizing is performed that may affect the effectiveness of the adversarial perturbation generated.
Note
Relative means that we assume the input has already been transformed (most
often resized and center cropped) with transforms defined as in the other
AttackModel. We then, in this case, would not require applying the same
transform again if the final input size is the same. The created transform
accepts inputs of both PIL.Image
and torch.Tensor
.
Example
Parameters:
Name | Type | Description | Default |
---|---|---|---|
other
|
Self
|
The other AttackModel instance. |
required |
Returns:
Type | Description |
---|---|
Callable[[Image | Tensor], Tensor]
|
The created relative transform. |
Source code in torchattack/attack_model.py
from_pretrained(model_name, from_timm=False)
classmethod
¶
Loads a pretrained model and initializes an AttackModel instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name
|
str
|
The name of the model to load. Accept specifying the model from
|
required |
from_timm
|
bool
|
Explicitly specifying to load the model from timm or torchvision.
Priority lower than argument |
False
|
Returns:
Type | Description |
---|---|
Self
|
An instance of AttackModel initialized with pretrained model. |
Source code in torchattack/attack_model.py
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
to(device)
¶
Move the model to the specified device and update the device attribute.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
device
|
The device to move the model to. |
required |
Returns:
Type | Description |
---|---|
Self
|
The AttackModel instance with the updated device. |
Source code in torchattack/attack_model.py
AttackModelMeta
dataclass
¶
AttackModelMeta class for handling image preprocessing parameters.
Note
This class is used internally to resolve the image preprocessing parameters
from pretrained models in timm
and torchvision.models
automatically.
Attributes:
Name | Type | Description |
---|---|---|
resize_size |
int
|
The size to resize images to before cropping. |
crop_size |
int
|
The final size of the image after cropping. |
interpolation |
InterpolationMode
|
Resize interpolation. Defaults to |
antialias |
bool
|
Whether to use antialiasing when resizing images. Defaults to True. |
mean |
tuple[float, ...]
|
Mean values for image normalization across RGB channels. Defaults to ImageNet means (0.485, 0.456, 0.406). |
std |
tuple[float, ...]
|
Standard deviation values for image normalization across RGB channels. Defaults to ImageNet standard deviations (0.229, 0.224, 0.225). |